

Department of Biochemical and Chemical Engineering Process Dynamics and Operations Group (DYN)

A Framework for the Simulation and Validation of Distributed Control Architectures for Technical Systems of Systems

S. Nazari^{*}, S. Wenzel^{*}, L.S. Maxeiner^{*}, C. Sonntag^{*,**}, S. Engell^{*}

*Process Dynamics and Operations Group, Dept. of Biochemical and Chemical Engineering, TU Dortmund, Germany

** euTeXoo GmbH, Germany

Outline

- Cyber-Physical Systems of Systems (CPSoS)
- Hierarchical / Distributed Control of CPSoS
- Objective of this Work
- The Simulation and Validation Framework (SVF)
- Case Studies
 - An Integrated Chemical Production Site
 - A Network of three Multi-Product Semi-Batch Reactors
- Summary and Outlook

Cyber-Physical Systems of Systems (CPSoS)

Large, complex, often spatially distributed Cyberphysical Systems (CPS)

that exhibit the features of Systems of Systems (SoS)

> Involve multiple organizational and political structures

Many more examples, e.g. smart (energy, water, gas, ...) networks, supply chains, or manufacturing

- generation companies
- need incentives towards > Process units of a large chemical site

WWW.CDSOS.eu

technische universität dortmund

IFAC WC. Toulouse. France July 9th- 14th , 2017

Hierarchical / Distributed Control of CPSoS (1)

Partial autonomy and distributed decisions in an integrated chemical production site

Hierarchical / Distributed Control of CPSoS (2)

- Centralized control of CPSoS is preferable, but not always feasible or desired
 - Complexity of the management problem
 - Privacy concerns may prohibit the sharing of operational details of the subsystems
- Distributed management, coordination, and optimization approaches

Objective of this Work

- How can state-of-the-art distributed control algorithms be systematically validated on simulation models while...
 - ...re-using (pre-existing) simulation models
 - Heterogeneous, possibly from different simulation environments
 - ... not having to implement the communication and automation architectures manually? (which is timeconsuming and error-prone)
 - ... being able to connect management methods to different CPSoS models effortlessly?
 - Avoiding proprietary implementations

The Simulation and Validation Framework (SVF) (1)

A plug-and-play based approach

The Simulation and Validation Framework (SVF) (2)

The Model Management Engine (MME)

- An intermediary component responsible for the coordination of the model components during simulation, e.g.:
 - Data communication between the components
 - Propagation of discrete events

SVF- Supported Languages and Features

- Support for:
 - White-box *Modelica* models and black-box models via co-simulation (FMI)
 - Modelica-based controllers, white-box and black-box external controllers
 - External support is done via the SVF
 External Function
 Interface
 - Python, Matlab and C are supported
- Generation of the communication structure
 - Via a generic XML-based configuration file
 - Reduces risk of errors

Case Studies

- Integrated chemical production complex
 - 9 processing plants whose models are derived from planning data
 - **Goal:** Balancing of the two steam networks
- Network of three semi-batch reactors that are operated autonomously
 - The reactors are coupled via discrete and continuous resources
 - Exothermic reaction $A + B \rightarrow C$
 - Goal: produce as much product C as possible for a given final time of 30 hours using a moving horizon optimization

Image source: https://en.wikipedia.org/wiki/Batch_reactor#/media/File:Batch_reactor_STR.svg

Case Studies – Problem Formulation (1)

 For the chemical complex, the Alternating Direction Method of Multipliers (ADMM) is used [1]

centralized problem for n subsystems:

Balance of the shared resource networks

s.t.
$$\sum_{i=1}^{n} r_i(u_i) = 0$$

 $\min_{u_i \in \mathcal{U}_i, \forall i} \sum J_i(u_i)$

$$\mathcal{L}_{\rho,i} = J_i(u_i) + (\lambda^k)^T \sum_{i=1}^n r_i(u_i) + \frac{\rho}{2} \sum_{i=1}^n ||r_i(u_i) - z_i^k||_2^2$$

[1] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Echstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Foundation and Trends in Machine Learning 3 (1) (2011) 1-122.

Case Studies – Problem Formulation (2)

 For the chemical complex, the Alternating Direction Method of Multipliers (ADMM) is used [1]

centralized problem for n subsystems:

- Relaxing of the coupling constraint
- Local systems $\rightarrow u_i$
- The coordinator manipulates the local decisions by setting the internal shared resource prices λ and values of z_i

[1] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Echstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Foundation and Trends in Machine Learning 3 (1) (2011) 1-122.

Case Studies – Problem Formulation (3)

- For the reactor network, price-based coordination is used
 - The local problem for subsystem i

$$\min_{u_i \in \mathcal{U}_i} J_i(u_i) + \lambda^T r_i(u_i)$$

- \rightarrow Solved for u_i
- The coordinator manipulates the local decisions by setting the internal shared resource prices λ

$$d(\lambda) = \sum_{i=1}^{n} r_i(u_i(\lambda)) = 0$$

Chemical Production Complex– SVF Implementation

- Matlab-based implementations of local optimization algorithms and the coordinator
 - C-based DLL files (black box) are created using the *Matlab* compiler
- Iterative information exchange via eventdriven communication architecture

The diagram view of the implementation in Dymola

Reactor Network– SVF Implementation

- Python-based implementations of local Model Predictive Controllers (NMPC) and the coordinator
 - Integrated using the C-Python API and the SVF external function interface
- Iterative information exchange via the eventdriven communication architecture

technische universität dortmund

Summary and Outlook

- A plug-and-play approach for simulation-based validation of distributed management and coordination architectures on simulation models of CPSoS
 - Reduces the currently large engineering effort by defining standard interfaces
 - Increased re-usability
 - Simplifies the deployment of new distributed architecture to realworld automation hardware
 - The *Modelica*-based framework provides an interface for the connection of external controller software components
- Under development: A software for the automatic generation of the interconnections and the communication structure

Thank you for your attention!

This project has received funding of European Commission under grant agreement number 611281. www.dymasos.eu

