Model-Based Optimal Experiment Design for Nonlinear Parameter Estimation Using Exact Confidence Regions

A.R. Gottu Mukkula and R. Paulen†
Technische Universität Dortmund
†Present address: Slovak University of Technology in Bratislava

July 13, 2017
Motivation

Linearized Confidence Regions

Optimal Experiment Design
Motivation

Linearized Confidence Regions

Exact Confidence Regions

Optimal Experiment Design

Optimal Experiment Design
1. Select the model structure.

Dynamic model or spatially discretized PDEs:

\[\hat{y} = F(u, p) \]

\[\begin{align*}
\text{state equation:} & \quad \dot{x} = f(x, u, p), \quad x(0) = g(u, p) \\
\text{output equation:} & \quad \hat{y} = h(x, p)
\end{align*} \]

Steady-state or discretized model:

\[\hat{y} = F(u, p) \]

\[\begin{align*}
\text{state equation:} & \quad 0 = f(x, u, p) \\
\text{output equation:} & \quad \hat{y} = h(x, p)
\end{align*} \]

\(\hat{y} \) - outputs; \(u \) - experimental conditions
2 Perform experiments. Gather data.
Estimate unknown parameters.

\[\hat{p} = \arg \min_{p \in P_0} J = \arg \min_{p \in P_0} \| y - \hat{y} \|^2_2 \]

subject to \(\hat{y} = F(u, p) \)
Analyze the quality of estimates.

\[
\hat{p} = \arg \min_{p \in P_0} J = \arg \min_{p \in P_0} \|y(e) - \hat{y}\|_2^2
\]

s.t. \(\hat{y} = F(u, p) \)
4. Analyze the quality of estimates.

\[\hat{p} = \arg \min_{p \in P_0} J = \arg \min_{p \in P_0} \| y(e) - \hat{y} \|_2^2 \]

\[\text{s.t. } \hat{y} = F(u, p) \]
Analyze the quality of estimates.

\[J(p) - J(\hat{p}) \leq n_p s^2 F_{n_p, N-n_p, \alpha} \]
Analyze the quality of estimates.

\[(p - \hat{p})^T \sum_{k=1}^{N} \frac{\partial \hat{y}(k)}{\partial p^T} \frac{\partial \hat{y}(k)}{\partial p} (p - \hat{p}) \leq n_p s^2 F_{n_p, N-n_p, \alpha}\]

(Fisher Inform. Mtx. (FIM))
Linearized Optimal Experiment Design (OED)

- Idea: Improve the reliability of parameter estimates by optimizing some measure of Fisher Information Matrix (FIM).

\[
\min_{u(t)} \phi(FIM) \quad \text{s.t. } FIM = \sum_{k=1}^{N} \frac{\partial \hat{y}(k)}{\partial \rho^T} Q \frac{\partial \hat{y}(k)}{\partial \rho}, \quad \hat{y} = F(p, u)
\]

A design: \(\phi(FIM) = \text{tr}(FIM) \), D design: \(\phi(FIM) = \text{det}(FIM) \), ...
The linearized and exact confidence regions are different in general.

How to find OED using the exact confidence region?
Example

- Benchmark nonlinear problem (biological oxygen demand (BOD))

\[\hat{y} = p_1(1 - \exp(-p_2 u)), \quad u \in [0, 20], \]

with \(y \) measured at the incubation times \(u \).

- Random normally distributed measurement noise with standard deviation \(\sigma = 0.1 \).

- True values of parameters \(p^* = (p_1, p_2)^T = (2.5, 0.5)^T \).

- \(N = 4 \), e.g. \(u := (2, 2, 20, 20)^T \) (linearized D design)
Example: $2\sigma(95\%)$-confidence regions

- Ellipsoidal over-approximation
- Orthotopic over-approximation
- Linearized confidence ellipsoid
- True values of parameters

p_1 vs. p_2
Over-approximation of exact confidence regions

Ellipsoidal over-approximation

$$\max_{p,k} \quad k$$

s.t. $$J(p) - J(\hat{p}) = n_p s^2 F_{n_p, N-n_p, \alpha}$$

$$(p - \hat{p})^T FIM(p - \hat{p}) =$$

$$k n_p s^2 F_{n_p, N-n_p, \alpha}$$
Ellipsoidal over-approximation

$$\max_{p,k} k$$

s.t. $$J(p) - J(\hat{p}) = np s^2 F_{np,N-np,\alpha}$$

$$(p - \hat{p})^T \text{FIM}(p - \hat{p}) =$$

$$knp s^2 F_{np,N-np,\alpha}$$

Orthotopic over-approximation

$$\max_{\pi} \sum_{j=1}^{np} p_j^U - p_j^L$$

s.t. $$J(\pi_j) - J(\hat{p}) = np s^2 F_{np,N-np,\alpha}$$
Optimal Experiment Design

Ellipsoidal over-approximation

\[
\min_u \phi(FIM/k) \quad \text{s.t.}
\]

\[
\max_{p,k} k
\]

\[
\text{s.t. } J(p) - J(\hat{p}) = n_p s^2 \mathcal{F}_{n_p,N-n_p,\alpha}
\]

\[
(p - \hat{p})^T FIM(p - \hat{p}) = kn_p s^2 \mathcal{F}_{n_p,N-n_p,\alpha}
\]
Optimal Experiment Design

Ellipsoidal over-approximation

\[
\min_u \phi(\text{FIM}/k) \quad \text{s.t.}
\max_{p,k} k
\]

\[
\text{s.t. } J(p) - J(\hat{p}) = n_p s^2 \mathcal{F}_{n_p, N-n_p, \alpha}
\]

\[
(p - \hat{p})^T \text{FIM}(p - \hat{p}) = kn_p s^2 \mathcal{F}_{n_p, N-n_p, \alpha}
\]

Orthotopic over-approximation

\[
\min_u \sum_{j=1}^{n_p} p_j^U - p_j^L \quad \text{s.t.}
\max_{\pi} \sum_{j=1}^{n_p} p_j^U - p_j^L
\]

\[
\text{s.t. } J(\pi_j) - J(\hat{p}) = n_p s^2 \mathcal{F}_{n_p, N-n_p, \alpha}
\]
Solving bi-level program

\[
\begin{align*}
\min_x f(y) \\
\text{s.t. } \max_y g(y) \\
\text{s.t. } 0 = h(x, y)
\end{align*}
\]

- Using KKT-based reformulation of the lower-level problem

\[
\begin{align*}
\min_{x, y, \lambda} f(y) \\
\text{s.t. } 0 &= \nabla_y g(y) + \nabla_y h(x, y) \lambda \\
0 &= h(x, y)
\end{align*}
\]

- Using nested approach

\[
\begin{align*}
\min_x f(y^*(x)) &\quad \leftrightarrow \quad x^*, y^* \\
\max_y g(y) &\quad \text{s.t. } 0 = h(x^*, y)
\end{align*}
\]
Solving bi-level program

\[
\begin{align*}
&\min_x f(y) \\
&\text{s.t. } \max_y g(y) \\
&\text{s.t. } 0 = h(x, y)
\end{align*}
\]

Using KKT-based reformulation of the lower-level problem

\[
\begin{align*}
&\min_{x,y,\lambda} f(y) \\
&\text{s.t. } 0 = \nabla_y g(y) + \nabla_y h(x, y)\lambda \\
&\quad 0 = h(x, y)
\end{align*}
\]

Using nested approach

\[
x_{k+1} = x_k - \frac{\partial f}{\partial y}\Big|_{y^*} \frac{\partial y^*}{\partial x}\Big|_{x_k}
\]

\[
\begin{align*}
&\max_y g(y) \\
&\text{s.t. } 0 = h(x^*, y)
\end{align*}
\]
Example: Simulation results

\[\hat{y} = p_1(1 - \exp(-p_2u)), \quad u \in [0, 20] \]

Linearized \iff \text{Confidence Regions} \implies \text{Exact}

- Linearized design: \(u_A = (1.6855, 1.6855, 20, 20)^T \),
 \(u_D = (2, 2, 20, 20)^T \)

- Orthotope-based design: \(u_{A/D} = (1.3685, 1.3685, 20, 20)^T \)
Conclusions

- Problem of optimal experiment design formulated as a bilevel program.
- A tight over-approximation of a joint-confidence region realized as an orthotope.
- Computationally intensive problem but tractable for small-scale cases.
- Classical optimal experiment design does not cope well with model nonlinearity → Optimal experiment designed using the exact confidence region can differ greatly from the (classical) linearized counterpart.

Acknowledgement: